this post was submitted on 07 Aug 2023
163 points (100.0% liked)

Technology

37691 readers
346 users here now

A nice place to discuss rumors, happenings, innovations, and challenges in the technology sphere. We also welcome discussions on the intersections of technology and society. If it’s technological news or discussion of technology, it probably belongs here.

Remember the overriding ethos on Beehaw: Be(e) Nice. Each user you encounter here is a person, and should be treated with kindness (even if they’re wrong, or use a Linux distro you don’t like). Personal attacks will not be tolerated.

Subcommunities on Beehaw:


This community's icon was made by Aaron Schneider, under the CC-BY-NC-SA 4.0 license.

founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 5 points 1 year ago (1 children)

Indeed. An old EE mentor told me once that most component aging takes place the first two weeks of operation. If it operates for two weeks, it will probably operate for a long, long time after that. When you're burning in a piece of gear, it helps the testing process if you put it in a high temperature environment as well (within reason) to place more stress on the components.

[–] [email protected] 2 points 1 year ago* (last edited 1 year ago)

The high temperature part is kind of a trap with SSDs: flash memory is easier to write (less likely to error out) at temperatures above 50C, so if you run a write heavy application at higher temperature, it's less likely to fail than if it was kept colder.

Properly stress testing an SSD would be writing to it while cold (below 20C) and checking read errors while hot (above 60C).

For normal use you'd want the opposite: write hot, read cold.