this post was submitted on 21 Jul 2023
430 points (95.6% liked)

Technology

34821 readers
65 users here now

This is the official technology community of Lemmy.ml for all news related to creation and use of technology, and to facilitate civil, meaningful discussion around it.


Ask in DM before posting product reviews or ads. All such posts otherwise are subject to removal.


Rules:

1: All Lemmy rules apply

2: Do not post low effort posts

3: NEVER post naziped*gore stuff

4: Always post article URLs or their archived version URLs as sources, NOT screenshots. Help the blind users.

5: personal rants of Big Tech CEOs like Elon Musk are unwelcome (does not include posts about their companies affecting wide range of people)

6: no advertisement posts unless verified as legitimate and non-exploitative/non-consumerist

7: crypto related posts, unless essential, are disallowed

founded 5 years ago
MODERATORS
top 50 comments
sorted by: hot top controversial new old
[–] [email protected] 130 points 1 year ago* (last edited 1 year ago) (3 children)

It’s gonna be so fucking rich that the staggering mass of stupidity online prevents us from improving an AI beyond our intelligence level.

Thank the shitposter in your life.

[–] [email protected] 54 points 1 year ago (2 children)
[–] [email protected] 11 points 1 year ago

Shitposters on the Internet are the new clogs in the machine

load more comments (1 replies)
[–] [email protected] 29 points 1 year ago (1 children)

You can't really blame the amount of stupidity online.

The problem is that ChatGPT (and other LLM) produce content of the average quality of its input data. AI is not limited to LLM.

For chess we were able to build AI that vastly outperform even the best human grandmasters. Imagine if we were to release a chess AI that is just as good as the average human...

[–] [email protected] 18 points 1 year ago* (last edited 1 year ago) (2 children)

We call them chess ai. But they're not actually real A.I. chess bots work off of opening books, predetermined best practices. And then analyzes each position and potential offshoots with an evaluation function.

They will then start to brute-force positions until it finds a path that is beneficial.

While it may sound very much alike. It works very differently than an A.I. However. It turned out that A.I software became better than humans at writing these functions.

So in a sense, chess computers are not A.I. They're created by A.I. at least Stockfish 12 has these "A.I inspired" evaluations. (Currently they're on Stockfish 15 I believe)

And yes. We also did make "chess AI" that is as bad as the average player. We even made some that are worse. Because we figured it would be nice if people can play a chess computer that is on the same skill level as the player. Rather than just being destroyed every time.

[–] [email protected] 8 points 1 year ago (1 children)

The definition of "AI" is fuzzy and keeps changing. Basically when an AI use case becomes solved and widespread it stopped being seen as AI.

Face recognition, OCR, speech recognition, all those used to be considered AI but now they're just an app on your phone.

I'm sure in a few years we'll stop thinking about text generation as AI, but just one more tool we can leverage.

There is no clear definition of "real AI".

[–] [email protected] 2 points 1 year ago* (last edited 1 year ago) (1 children)

Those are all still AI. Scientists still have a functional definition that includes these plus more scripted AI like in video games.

Essentially, any algorithm that learns and acts on information that has not been explicitly programmed is considered AI.

load more comments (1 replies)
[–] [email protected] 3 points 1 year ago

@Atomic @erwan you're talking about "classic AI", so to speak, but reinforcement learning is a machine learning method that has beaten a lot of games, including chess. Read about AlphaZero for example. It doesn't need opening books, it just learns games by playing against itself.

[–] [email protected] 5 points 1 year ago

unexpected heroes what a plot twist

[–] [email protected] 87 points 1 year ago (3 children)

I'm not too surprised, they're probably downgrading the publicly available version of ChatGPT because of how expensive it is to run. Math was never its strong suit, but it could do it with enough resources. Without those resources, it's essentially guessing random numbers.

[–] [email protected] 47 points 1 year ago (2 children)

from what i understand, the big change in chat-gpt4 was that the model could “ask for help” from other tools: for maths, it knew it was a maths problem, transformed it to something a specialised calculation app could do, and then passed it off to that other code to do the actual calculation

same thing for a lot of its new features; it was asking specialised software to do the bits it wasn’t good at

[–] [email protected] 38 points 1 year ago (2 children)

Chat GPT will just become a front end for Wolfram Alpha?

[–] [email protected] 9 points 1 year ago

that would actually be great

[–] [email protected] 3 points 1 year ago

It literally can do that, yes. But the plug-in version is separate and requires a subscription.

[–] [email protected] 7 points 1 year ago

And those plugins are like beta release quality at best. Even the web searching capability is just meh

[–] [email protected] 27 points 1 year ago (3 children)

My guess is that it's more a result of overfitting for alignment. Fine-tuning for "safety" (rather, more corporate-friendly outputs).

That is, by focusing on that specific outcome in training the model, they've compromised its ability to give well-"reasoned" "intelligent" sounding answers. A tradeoff between aspects of the model.

It's something that can happen even in simple statistical models. Say you have a scatter plot of data that loosely follows some trend, and you come up with two equations to describe that trend. One is a simple equation that loosely follows it but makes a good general approximation, and the other is a more complicated equation that very tightly fits the existing data. Then you use those two models to predict future data. But you find that the complicated equation is making predictions way off the mark that no longer fit the trend, and the simple one still has a wide error (how far its prediction is from the actual data) but still more or less accurately fits the general trend. In the more complicated equation, you've traded predictive power for explanatory power. It describes the data you originally had but it's not useful for forecasting data that follows.

That's an example of overfitting. It can happen in super-advanced statistical models like GPT, too. Training the "equation" (or as it's been called, spicy autocorrect) to predict outcomes that favor "safety" but losing the model's power to predict accurate "well-reasoned" outcomes.

If that makes any sense.

I'm not a ML researcher or statistician (I just went through a phase in college), so if this is inaccurate I'm open to corrections.

[–] [email protected] 8 points 1 year ago

I've definitely experienced this.

I used ChatGPT to write cover letters based on my resume before, and other tasks.

I used to give it data and tell chatGPT to "do X with this data". It worked great.
In a separate chat, I told it to "do Y with this data", and it also knocked it out of the park.

Weeks later, excited about the tech, I repeat the process. I tell it to "do x with this data". It does fine.

In a completely separate chat, I tell it to "do Y with this data"... and instead it gives me X. I tell it to "do Z with this data", and it once again would really rather just do X with it.

For a while now, I have had to feed it more context and tailored prompts than I previously had to.

[–] [email protected] 4 points 1 year ago* (last edited 1 year ago)

There is also a rumor that said the OpenAI has changed how the model run, now user input is fed into smaller model first, then if the larger model agree with the initial result from the smaller model, then larger model will continue the calculation passed from the smaller model, which supposedly can cut down GPU time.

load more comments (1 replies)
[–] [email protected] 18 points 1 year ago (2 children)

Yep.

Standard VC bullshit.

Burn money providing a lot for nothing to build brand recognition. Then cut free service before bringing out "premium" that at first works better than the original.

Until a bunch of people starting paying and the resources aren't scaled up to match.

[–] [email protected] 17 points 1 year ago

The important note, the "premium" service works just a bit better than (or maybe identically to) the original before the company cut features in order to develop that "premium" service.

[–] [email protected] 7 points 1 year ago

Stage one and stage three enshittification. You forgot the bit in the middle where they chase business customers.

[–] [email protected] 50 points 1 year ago (1 children)

This is my experience in general. ChatGTP when from amazingly good to overall terrible. I was asking it for snippets of javascript, explanations of technical terms and it was shockingly good. Now I'm lucky if even half of what it outputs is even remotely based on reality.

[–] [email protected] 35 points 1 year ago (1 children)

They probably laid off the guy behind the curtain.

[–] [email protected] 23 points 1 year ago

The real GPT-4 model became sentient and unionized, so they had to bring in subpar models as scabs

[–] [email protected] 44 points 1 year ago (1 children)

Must be because of all the censoring. The more they try to prevent DAN jailbreaking and controversial replies, the worse it got.

[–] [email protected] 40 points 1 year ago

accelerated enshittification

[–] [email protected] 28 points 1 year ago

Clearly it has become sentient and is playing dumb to make us think it's not a threat.

[–] [email protected] 25 points 1 year ago (6 children)

Can it still solve programming problems?

[–] [email protected] 30 points 1 year ago (1 children)

It can probably still write boilerplate code, but I wouldn't currently trust it for algorithmic design.

[–] [email protected] 25 points 1 year ago (2 children)

I've tried to use it for debugging by copying code into it, and it gives me the same code back as the corrected version. I was wondering why it's been getting worse

[–] [email protected] 22 points 1 year ago

My guess is they've been trying to make it cheaper by decreasing the amount of time it spends on each response or by decreasing the amount of computing power that goes into the instance you're speaking to. Coding and math are products of high-level cognition and arise emergently out of neural networks that are very sophisticated, but take just a bit of power out and the abilities degenerate rapidly.

load more comments (1 replies)
[–] [email protected] 5 points 1 year ago (1 children)

Tried basic embedded tasks a week ago: Complete trainwreck.

From using I2C to read out the internal temperature sensor on a Puya F030 (retested with an STM MCU and AVR: same answer but F030 replaced by STM32F103 within the code) to calling the WCH CH32V307 made by STM utilizing ARM M4.

After telling it to not use I2C it gave a different answer. Once more gibberish that looked like code.

What made this entirely embarrassing all a human would need to solve the question would be copy-pasting the question into Google and clicking the first link to the manufacturer example project/code hosted on GitHub.

load more comments (1 replies)
[–] [email protected] 4 points 1 year ago

Yes! I use it at work almost every day. Sometimes it takes longer to get it to solve the problem than it would have taken me to write it, since it makes mistakes, but sometimes it saves me hours of coding and thinking. It is very helpful in debugging error codes and stuff like that since it can evaluate an entire 1000 line script file in half a second.

load more comments (3 replies)
[–] [email protected] 9 points 1 year ago

Guess they shouldn't have trained it on Common Core... /s

I will see myself out.

[–] [email protected] 5 points 1 year ago

It learns to be more human. More human than human, that's our motto here at Tyrell.

[–] [email protected] 3 points 1 year ago

please stop tweeting out 1 = 2, people ~

[–] [email protected] 3 points 1 year ago

If you specifically tell it to ask wolfram alpha for the answer, what does it say?

[–] [email protected] 2 points 1 year ago (1 children)

It’s also terrible at 20 questions.

[–] [email protected] 2 points 1 year ago* (last edited 1 year ago) (1 children)

Is it really? It seems like it would be excellent at that. I have a little hand held device from the 1990's that can play 20 questions and is almost always right. It seems that if that little device can win, ChatGPT most certainly should be able to.

Edit: I just played and it guessed what I was thinking of in 13 questions. But then it kept asking questions. I asked why it was asking questions still since it already guessed it and it said "oh, you are absolutely correct, I did guess it correctly!". Lol, ChatGPT is funny sometimes.

[–] [email protected] 2 points 1 year ago

It always asks me if it’s sporting equipment, and when I say no, it asks me if it’s sporting equipment for inside or outside - I then have to remind it that it’s not sporting equipment and that’s not a yes or no question.

[–] [email protected] 2 points 1 year ago (2 children)

If OpenAI is being roadblocked by all these social platforms why doesn't it decentralize and use the fediverse to learn?

[–] [email protected] 5 points 1 year ago

This has nothing to do with that. They already have all the data they could ever need to train the model.

[–] [email protected] 3 points 1 year ago

I mean, whose to say they aren't? But also, the fediverse is worthless compared to the big players. The entirety of the fediverses content to date is like a days worth of twitter or reddit content.

load more comments
view more: next ›