this post was submitted on 22 Jul 2023
83 points (94.6% liked)
Asklemmy
43812 readers
920 users here now
A loosely moderated place to ask open-ended questions
Search asklemmy ๐
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- [email protected]: a community for finding communities
~Icon~ ~by~ ~@Double_[email protected]~
founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I'm trying to tell you limited context is a feature not a bug, even other bots do the same thing like Replika. Even when all past data is stored serverside and available, it won't matter because you need to reduce the weighting or you prevent significant change in output values (and less change as the history grows larger). Time decay of information is important to making these systems useful.
give an example please, because i don't see how in normal use the weighting would matter at a significant scale based on the massive volume of training data
any interact the chatbot has with one person is dwarfed by the amount of total text data the AI has consumed through training. it's like saying saggitarius a gets changed over time by adding in a few planets. while definitely true it's going to be a very small effect
That's kind of the point and how's it different than a human. A human is going to weight local/recent contextual information as much more relevant to the conversation because they're actively learning and storing the information (our brains work on more of an associative memory basis than temporal). However, with our current models it's simulated by decaying weights over the data stream. So when you get conflicts between contextual correct vs "global" correct output, global has a tendency to win out that is more obvious. Remember you can't actually make changes to the model as a user without active learning. Thus the model will always eventually return to it's original behaviour as long as you can fill up the memory.