this post was submitted on 23 Feb 2024
28 points (88.9% liked)

datahoarder

6758 readers
1 users here now

Who are we?

We are digital librarians. Among us are represented the various reasons to keep data -- legal requirements, competitive requirements, uncertainty of permanence of cloud services, distaste for transmitting your data externally (e.g. government or corporate espionage), cultural and familial archivists, internet collapse preppers, and people who do it themselves so they're sure it's done right. Everyone has their reasons for curating the data they have decided to keep (either forever or For A Damn Long Time). Along the way we have sought out like-minded individuals to exchange strategies, war stories, and cautionary tales of failures.

We are one. We are legion. And we're trying really hard not to forget.

-- 5-4-3-2-1-bang from this thread

founded 4 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 4 points 8 months ago* (last edited 8 months ago) (2 children)

I don't really feel like I'm much the wiser, having read this, on how exactly this works. It's storing data in 3 dimensions in layers and uses 2 lasers in both write and the read process. Why multiple layers in 3 dimensions over a single layer as in traditional optical media would yield better storage density is intuitive but the way they're able to do this is not that well explained. I don't understand the relationship between having 2 lasers and being able to store data in many layers. The fact that one laser disables the effect of the other both in read and in write is confusing, one would think "switching off" the writing process done by... not writing anymore, rather than having a second laser which somehow disables the first but in any case the effect of this is said to allow "spots" (are they like pits?) smaller than the wavelength of the light used to create them which is presumably very small and again makes intuitive sense as to how that would allow increased density and thus storage capacity but doesn't help explain the 3 dimensionality. Also, how does firing a laser at a material presumably burn it away to produce a "spot" (pit?) but firing a second laser at it stops this from happening? Similarly, with reading, how does firing a laser at a spot cause it to fluoresce, yet firing a second laser at it somehow causes it to stop doing that? How bizarre.

On an even more basic level, how do layers work? How does the outer most layer of the readable surface of the disc not block or interfere with the ability to read or write the next layer beneath it and so on?

[–] [email protected] 4 points 8 months ago

The spot size is the size of the point the laser focuses on. It seems with the material they've used that there is some kind of interference between the two lasers they use to make a pit smaller than you would expect. There's not a whole lot of information in the article to understand the details. Also, I'm just a guy who works on lasers, getting C's in my optics class currently so take it with a massive dose of salt

[–] [email protected] 1 points 6 months ago

"spots" (are they like pits?)

Yeah, the petabit is made of lots and lots of tiny betapits /s