this post was submitted on 01 Jan 2024
6 points (87.5% liked)

Ask Science

8623 readers
1 users here now

Ask a science question, get a science answer.


Community Rules


Rule 1: Be respectful and inclusive.Treat others with respect, and maintain a positive atmosphere.


Rule 2: No harassment, hate speech, bigotry, or trolling.Avoid any form of harassment, hate speech, bigotry, or offensive behavior.


Rule 3: Engage in constructive discussions.Contribute to meaningful and constructive discussions that enhance scientific understanding.


Rule 4: No AI-generated answers.Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.


Rule 5: Follow guidelines and moderators' instructions.Adhere to community guidelines and comply with instructions given by moderators.


Rule 6: Use appropriate language and tone.Communicate using suitable language and maintain a professional and respectful tone.


Rule 7: Report violations.Report any violations of the community rules to the moderators for appropriate action.


Rule 8: Foster a continuous learning environment.Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.


Rule 9: Source required for answers.Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.


By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.

We retain the discretion to modify the rules as we deem necessary.


founded 1 year ago
MODERATORS
 

I tried finding some research and found lots about freezing matter or putting it under extreme pressure, but not trying both.

My thought experiment involved taking a small portion of ideal of matter (not sure what), artificially applying extreme pressure to it and than attempt to lower its temperature and if possible, apply even more pressure before trying to lower its temperature - taking it as low as possible under the highest pressure you could.

I assumed there's likely to be a conflict between pressure - thus increasing vibration/wave properties of the material - and how it would be possible to reduce those energetic wave properties.

Thanks for any insight.

you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 6 points 10 months ago* (last edited 10 months ago)

Most experimental research in matter under extreme pressures is concerned with recreating conditions within the interiors of planets and stars (the latter falls under the field of high energy density physics). The temperatures involved therefore tend to be very high. However, there's no inherent conflict between high pressures and low temperatures, it's just that temperature tends to increase when you compress something. Compress an ideal gas, for example, and it will heat up. Let it sit in its compressed state for a while though, and it will cool back down despite remaining under high pressure.

This is true for solids and liquids too (putting any phase transitions aside), though they are much less compressible. The core of the Earth will eventually cool too, though it's currently kept at high temperature by the radioactive decay of heavy elements. Diamond anvil cells, however, can reach pressures exceeding those at the center of the earth in a laboratory setting, and some DACs can even be cooled to cryogenic temperatures. This figure on Wikipedia suggests cryo-DACs can be used to reach pressures up to 350 GPa at cryogenic temperatures. As an example, a quick search turns up a paper (arxiv version) that makes use of a DAC to study media at liquid nitrogen temperatures and pressures up to 10 GPa (~3% the pressure at the center of the Earth). Search around and I'm sure you can find others.