this post was submitted on 06 Nov 2023
10 points (91.7% liked)

Natural Philosophy

164 readers
1 users here now

A community for anyone interested in big questions and meta-questions pertaining to the natural world. For the purpose of this community, natural philosophy encompasses philosophy of science and metaphysics as well.

For those of you on Matrix, there is a super-space which tries to aggregate scientific chat rooms and spaces at #science-space:matrix.org, including a room for philosophy of science and a physics space.

Moderation: Submissions and comments are moderated on a subjective case-by-case basis to facilitate and maintain a healthy, pleasant, and rewarding environment for anyone with a genuine interest in learning, participating, or merely lurking. Just to state some obvious (non-exhaustive set of) behaviours and content we won't have here: bigotry; hate speech; sealioning; strawmen; pseudo-/anti-science; dis-/misinformation. Additional context may be taken into consideration as well.

founded 1 year ago
MODERATORS
 

Philosophers like Murray Bookchin argued that the natural world tends towards greater and greater diversity. Now scientists in collaboration with philosophers argue that this tendency to complexify could constitute a natural law of the universe.

Significance The universe is replete with complex evolving systems, but the existing macroscopic physical laws do not seem to adequately describe these systems. Recognizing that the identification of conceptual equivalencies among disparate phenomena were foundational to developing previous laws of nature, we approach a potential “missing law” by looking for equivalencies among evolving systems. We suggest that all evolving systems—including but not limited to life—are composed of diverse components that can combine into configurational states that are then selected for or against based on function. We then identify the fundamental sources of selection—static persistence, dynamic persistence, and novelty generation—and propose a time-asymmetric law that states that the functional information of a system will increase over time when subjected to selection for function(s).

Abstract Physical laws—such as the laws of motion, gravity, electromagnetism, and thermodynamics—codify the general behavior of varied macroscopic natural systems across space and time. We propose that an additional, hitherto-unarticulated law is required to characterize familiar macroscopic phenomena of our complex, evolving universe. An important feature of the classical laws of physics is the conceptual equivalence of specific characteristics shared by an extensive, seemingly diverse body of natural phenomena. Identifying potential equivalencies among disparate phenomena—for example, falling apples and orbiting moons or hot objects and compressed springs—has been instrumental in advancing the scientific understanding of our world through the articulation of laws of nature. A pervasive wonder of the natural world is the evolution of varied systems, including stars, minerals, atmospheres, and life. These evolving systems appear to be conceptually equivalent in that they display three notable attributes: 1) They form from numerous components that have the potential to adopt combinatorially vast numbers of different configurations; 2) processes exist that generate numerous different configurations; and 3) configurations are preferentially selected based on function. We identify universal concepts of selection—static persistence, dynamic persistence, and novelty generation—that underpin function and drive systems to evolve through the exchange of information between the environment and the system. Accordingly, we propose a “law of increasing functional information”: The functional information of a system will increase (i.e., the system will evolve) if many different configurations of the system undergo selection for one or more functions.

you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] -2 points 1 year ago (3 children)

Seems to be against the second law of thermodynamics.

[–] [email protected] 2 points 1 year ago

second law of thermodynamics

but in line (or perhaps a recapitulation of) with the second law of infodynamics

[–] [email protected] 2 points 1 year ago

I guess this law would be placed at a different level: yes these systems consume energy, so in the long term, they die, but entropy can locally increase, that's what our ecosystem is about: our entropy increases will the sun's decreases.

[–] [email protected] 1 points 1 year ago

They actually address the laws of thermodynamics in the text though.