this post was submitted on 13 Sep 2023
68 points (97.2% liked)
Astronomy
4122 readers
34 users here now
founded 3 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
There probably was no "origin point" because there was no singularity at the beginning of the big bang. The full universe may have been huge or even been infinite in size and even the observable universe had a significant size. There perhaps was a geographic center though, then and now.
That would be the least of it. Knowing where a geographic center or boundary was would allow us to track absolute and not just relative motion. Then we could see what if any special properties apply to an absolute frame of reference.
But the existence of a "geometric center" breaks several of the base assumptions of astrophysics. If there were a geometric center as you say, then there would have to be "edges" of the universe, or the inflation would need a center.
Both of which we think are not the case, due to lots of battle tested theories that tell us space is generally of flat curvature and homogenous, meaning one random chunk of space (the actual stuff of space, not like looking at stars and other structures of the universe) should be indistinguishable from another.
These days those assumptions are considered pretty fundamental to any understanding of space itself and the universe at large that we have.
Nope. The reason why the FLRW model does not include modelling boundaries is because it is very hard to model boundaries, not because they are unlikely.
https://en.wikipedia.org/wiki/Shape_of_the_universe
[Many finite mathematical spaces, e.g., a disc, have an edge or boundary. Spaces that have an edge are difficult to treat, both conceptually and mathematically. Namely, it is very difficult to state what would happen at the edge of such a universe. For this reason, spaces that have an edge are typically excluded from consideration.]
Conclusion: The primary reason why an apparent "flat" universe could still have boundaries is because the FLRW model is either incomplete or possibly even not the right model.
It also makes no sense to invoke the cosmological principal to "prove" there are no boundaries. The philosophical cosmological principal simply says that since we don't see boundaries they must not exist anywhere. That makes no sense because we would expect any boundaries to only exist in a very small percent of the total volume of space.