this post was submitted on 26 Dec 2024
223 points (98.7% liked)
Asklemmy
44255 readers
1293 users here now
A loosely moderated place to ask open-ended questions
Search asklemmy π
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- [email protected]: a community for finding communities
~Icon~ ~by~ ~@Double_[email protected]~
founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Please read it all again. They didn't rely on the conversion. It's just a convenient way to create a counterexample.
Anyway, here's a simple equivalent. Let's consider a number like pi except that wherever pi has a 9, this new number has a 1. This new number is infinite and doesn't repeat. So it also answers the original question.
"please consider a number that isnt pi" so not relevant, gotcha. it does not answer the original question, this new number is not normal, sure, but that has no bearing on if pi is normal.
OK, fine. Imagine that in pi after the quadrillionth digit, all 1s are replaced with 9. It still holds
"ok fine consider a number that still isn't pi, it still holds." ??
Prove that said number isn't pi.
isnt, qed
Hmm, ok. Let me retry.
The digits of pi are not proven to be uniform or randomly distributed according to any pattern.
Pi could have a point where it stops having 9's at all.
If that's the case, it would not contain all sequences that contain the digit 9, and could not contain all sequences.
While we can't look at all the digits of Pi, we could consider that the uniform behavior of the digits in pi ends at some point, and wherever there would usually be a 9, the digit is instead a 1. This new number candidate for pi is infinite, doesnβt repeat and contains all the known properties of pi.
Therefore, it is possible that not any finite sequence of non-repeating numbers would appear somewhere in Pi.
i am aware nobody has proven pi is normal.