this post was submitted on 19 Oct 2024
271 points (98.9% liked)
Science Memes
10988 readers
2690 users here now
Welcome to c/science_memes @ Mander.xyz!
A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.
Rules
- Don't throw mud. Behave like an intellectual and remember the human.
- Keep it rooted (on topic).
- No spam.
- Infographics welcome, get schooled.
This is a science community. We use the Dawkins definition of meme.
Research Committee
Other Mander Communities
Science and Research
Biology and Life Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- !reptiles and [email protected]
Physical Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
Humanities and Social Sciences
Practical and Applied Sciences
- !exercise-and [email protected]
- [email protected]
- !self [email protected]
- [email protected]
- [email protected]
- [email protected]
Memes
Miscellaneous
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Frequentist statistics are really... silly in a way. And this coming from someone who has to teach it. Sure, p is less than 5%, but you sampled 100,000 people-- an effect size of 0.05 would be significant at this rate. "bUt ItS sIgNiFiCaNt"... Oy.
I get very suspicious if a paper samples multiple groups and still uses p. You would use q in that case, and the fact that they didn't suggests that nothing came up positive.
Still, in my opinion it's generally OK if they only use the screen as a starting point and do follow-up experiments afterwards
Yeah, I used to work in a field with huge samples so significance wasn't really all that useful. I usually just report significant coefficients and try to make clear what changes by model. For instance, if a type of curriculum showed improvements on test scores, you simply say how much and, possibly, illustrate it by saying if a person went from 50th percentile to 55th percentile.
Every field varies, though. I find it crazy how much psychologists I've worked with cared about r-squared. To each their own, I guess.