this post was submitted on 21 Sep 2024
403 points (97.6% liked)

Technology

59298 readers
4608 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 1 year ago
MODERATORS
 

Modern AI data centers consume enormous amounts of power, and it looks like they will get even more power-hungry in the coming years as companies like Google, Microsoft, Meta, and OpenAI strive towards artificial general intelligence (AGI). Oracle has already outlined plans to use nuclear power plants for its 1-gigawatt datacenters. It looks like Microsoft plans to do the same as it just inked a deal to restart a nuclear power plant to feed its data centers, reports Bloomberg.

you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 6 points 1 month ago (1 children)

I'm firmly in the "building new nuclear doesn't make financial sense" camp, but I do think that extending the life of any existing nuclear plant does. Restarting a previously operational nuclear plant lies somewhere in between.

[–] [email protected] 11 points 1 month ago (1 children)

I think when you start looking at how expensive other forms of green energy are (like wind) long term, nuclear looks really good. Short term, yeah it’s expensive, but we need long term solutions.

[–] [email protected] 4 points 1 month ago (1 children)

I don't think that math works out, even when looking over the entire 70+ year life cycle of a nuclear reactor. When it costs $35 billion to build two 1MW reactors, even if it will last 70 years, the construction cost being amortized over every year or every megawatt hour generated is still really expensive, especially when accounting for interest.

And it bakes in that huge cost irreversibly up front, so any future improvements will only make the existing plant less competitive. Wind and solar and geothermal and maybe even fusion will get cheaper over time, but a nuclear plant with most of its costs up front can't. 70 years is a long time to commit to something.

[–] [email protected] 6 points 1 month ago (2 children)

Can you explain how wind and solar get cheaper over time? Especially wind, those blades have to be replaced fairly often and they are expensive.

[–] [email protected] 3 points 1 month ago* (last edited 1 month ago) (1 children)

Wind and solar also have to be paired with either cheap natural gas or energy storage systems that are often monstrously expensive. Unfortunately these numbers are almost always left out when one discusses prices.

People do appreciate the lights staying on, after all.

[–] [email protected] 4 points 1 month ago

Yeah, we haven’t even gotten into the reliability. The have dead times where no output is created that nuclear doesn’t suffer from.

[–] [email protected] 3 points 1 month ago (1 children)

With nuclear, you're talking about spending money today in year zero to get a nuclear plant built between years 5-10, and operation from years 11-85.

With solar or wind, you're talking about spending money today to get generation online in year 1, and then another totally separate decision in year 25, then another in year 50, and then another in year 75.

So the comparison isn't just 2025 nuclear technology versus 2025 solar technology. It's also 2025 nuclear versus 2075 solar tech. When comparing that entire 75-year lifespan, you're competing with technology that hasn't been invented yet.

Let's take Commanche Peak, a nuclear plant in Texas that went online in 1990. At that time, solar panels cost about $10 per watt in 2022 dollars. By 2022, the price was down to $0.26 per watt. But Commanche Peak is going to keep operating, and trying to compete with the latest and greatest, for the entire 70+ year lifespan of the nuclear plant. If 1990 nuclear plants aren't competitive with 2024 solar panels, why do we believe that 2030 nuclear plants will be competitive with 2060 solar panels or wind turbines?

[–] [email protected] 1 points 1 month ago* (last edited 1 month ago) (1 children)

why do we believe that 2030 nuclear plants will be competitive with 2060 solar panels or wind turbines

They have to be competitive with solar panels & grid-scale energy storage costs combined. You can't leave off 90% of the cost and call it a win. Unless you are fine pairing solar panels with natural gas as we currently do; but that defeats much of the purpose of going carbon-free.

If 1990 nuclear plants aren’t competitive with 2024 solar panels

They aren't competitive with 2024 solar panels paired with natural gas. But, again, is that really the world you are advocating for?

[–] [email protected] 2 points 1 month ago

Unless you are fine pairing solar panels with natural gas as we currently do

Yes, I am, especially since you seem to be intentionally ignoring wind+solar. It's much cheaper to have a system that is solar+wind+nat gas, and that particular system can handle all the peaking and base needs today, cheaper than nuclear can. So nuclear is more expensive today than that type of combined generation.

In 10 years, when a new nuclear plant designed today might come on line, we'll probably have enough grid scale storage and demand-shifting technology that we can easily make it through the typical 24-hour cycle, including 10-14 hours of night in most places depending on time of year. Based on the progress we've seen between 2019 and 2024, and the projects currently being designed and constructed today, we can expect grid scale storage to plummet in price and dramatically increase in capacity (both in terms of real-time power capacity measured in watts and in terms of total energy storage capacity measured in watt-hours).

In 20 years, we might have sufficient advanced geothermal to where we can have dispatchable carbon-free electricity, plus sufficient large-scale storage and transmission that we'd have the capacity to power entire states even when the weather is bad for solar/wind in that particular place, through overcapacity from elsewhere.

In 30 years, we might have fusion.

With that in mind, are you ready to sign an 80-year mortgage locking in today's nuclear prices? The economics just don't work out.