this post was submitted on 16 Sep 2024
718 points (93.3% liked)

memes

10697 readers
2695 users here now

Community rules

1. Be civilNo trolling, bigotry or other insulting / annoying behaviour

2. No politicsThis is non-politics community. For political memes please go to [email protected]

3. No recent repostsCheck for reposts when posting a meme, you can only repost after 1 month

4. No botsNo bots without the express approval of the mods or the admins

5. No Spam/AdsNo advertisements or spam. This is an instance rule and the only way to live.

Sister communities

founded 2 years ago
MODERATORS
 
you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 12 points 3 months ago (1 children)

Yup. When you have a circuit that is not purely resistive the inductive or capacitive load causes the voltage and current to not be in phase. It looks like ohms law is being violated. However the missing part of the energy is in the imaginary component to be returned latter.

[–] [email protected] 1 points 3 months ago (1 children)

But that is hardly a 'natural occurence' of complex numbers - it just turned out that they were useful to represent the special case of harmonic solutions because of their relationship with trig functions.

[–] [email protected] 4 points 3 months ago (1 children)

No. It's more what the previous poster said about encoding rotation. It's just not a xyz axes. It's current, charge, flux as axes. The trig is how you collapse the 3d system into a 2d or 1d projection. You lose some information but it's more useful from a spefic reference.

Without complex numbers you can't properly represent the information.

[–] [email protected] 0 points 3 months ago

The natural representation would be the transient solution u(t) or i(t). Harmonic solutions are merely a special case, for which it turned out complex numbers were useful (because of the way they can represent rotation). They certainly serve a purpose there, but imo this is not an instance of 'complex numbers appearing in nature'.