this post was submitted on 25 May 2024
564 points (96.4% liked)

Science Memes

11081 readers
3148 users here now

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don't throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

founded 2 years ago
MODERATORS
 
you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 4 points 5 months ago (1 children)

Infinite-dimensional vector spaces also show up in another context: functional analysis.

If you stretch your imagination a bit, then you can think of vectors as functions. A (real) n-dimensional vector is a list of numbers (v~1~, v~2~, ..., v~n~), which can be thought of as a function {1, 2, ..., n} → ℝ, where k ∊ {1, ..., n} gets sent to v~k~. So, an n-dimensional (real) vector space is a collection of functions {1, 2, ..., n} -> ℝ, where you can add two functions together and multiply functions by a real number.

Under this interpretation, the idea of "infinite-dimensional" vector spaces becomes much more reasonable (in my opinion anyway), since it's not too hard to imagine that there are situations where you want to look at functions with an infinite domain. For example, you can think of an infinite sequence of numbers as a function with infinite domain. (i.e., an infinite sequence (v~1~, v~2~, ...) is a function ℕ → ℝ, where k ∊ ℕ gets sent to v~k~.)

and this idea works for both "countable" and "uncountable" "vectors". i.e., you can use this framework to study a vector space where each "vector" is a function f: ℝ → ℝ. why would you want do this? because in this setting, integration and differentiation are linear maps. (e.g., if f, g: ℝ → ℝ are "vectors", then D(f + g) = Df + Dg, and ∫*(f+g) = ∫f + ∫g, where D denotes taking the derivative.)

[–] [email protected] 1 points 5 months ago

Infinite-dimensional vector spaces also show up in another context: functional analysis.

From an engineering perspective, functional analysis is the main mathematical framework behind (1) and (2) in my previous comment. Although they didn't teach functional analysis for real in any of my coursework, I kinda picked up that it was going to be an important topic for what I want to do when I kept seeing textbooks for it cited in PDE and "signals and systems" books. I've been learning it on my own since I finished Calc III like four years ago.

Such an incredibly interesting and deep topic IMO.