this post was submitted on 21 Mar 2024
1193 points (99.0% liked)
memes
10651 readers
2604 users here now
Community rules
1. Be civil
No trolling, bigotry or other insulting / annoying behaviour
2. No politics
This is non-politics community. For political memes please go to [email protected]
3. No recent reposts
Check for reposts when posting a meme, you can only repost after 1 month
4. No bots
No bots without the express approval of the mods or the admins
5. No Spam/Ads
No advertisements or spam. This is an instance rule and the only way to live.
Sister communities
- [email protected] : Star Trek memes, chat and shitposts
- [email protected] : Lemmy Shitposts, anything and everything goes.
- [email protected] : Linux themed memes
- [email protected] : for those who love comic stories.
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Good point and well spotted!
PS: Though it's not actually called exponential (as it isn't e^nr-3-month-periods^ but rather 2^nr-3-month-periods^ ) but has a different name which I can't recall anymore.
PPS: Found it - it's a "geometric progression".
By tweaking a few parameters you can turn every base into any other base for exponentials. Just use e^(ln(b)*x)
PS: The formula here would be e^(ln(2)/3*X) and x is the number of months. So the behavior it's exponential in nature.
By that definition you can turn any linear function a * x + b, "exponential" by making it e^ln(a*x +b) even though it's actually linear (you can do it to anything, including sin() or even ln() itself, which would make per that definition the inverse of exponential "exponential").
Essentially you're just doing f(f^-1^(g(x))) and then saying "f(m) is e^m^ so if I make m = ln(g(x)) then g(x) is exponential"
Also the correct formula in your example would be e^(ln(2)*X/3) since the original formula if X denotes months is 2^X/3^
It doesn't matter if you divide ln(2) or x by three, it's the same thing.
Get a room you two
A terminology that I learned from the Terminator 2 movie. Only that was, I think, a "geometric rate".
Chessboard and wheat
One of the best mathematical stories from ancient times, IMHO,