this post was submitted on 10 Aug 2024
689 points (98.2% liked)

Science Memes

11047 readers
3574 users here now

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don't throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

founded 2 years ago
MODERATORS
 
you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 83 points 3 months ago (22 children)

Astrophysicist here. Yes, space is crazy, but interesting things to keep in mind:

  1. The size of a star is determined by something called the photosphere. With those extremely massive stars, you can be hundreds of millions of kilometres "inside" and not yet know it.
  2. Similar story with supermassive black holes, from the perspective of an astronaut falling in, they wouldn't really be able to tell when they cross the horizon because the tidal forces there are very small (they will inevitably fall towards the centre and get spaghettified at some point)
[–] [email protected] 12 points 3 months ago (7 children)

Hi Astrophysics,

I always wondered why they draw black holes like they do in that the accretion looks like it's drawn in two planes. I would have thought it would have looked a bit more like a saturns rings? Or is it exactly like saturns rings but we see the whole ring bent round the top because a black hole bends the light around so we can see it? Or is it something else entirely that they are trying to depict here?

[–] [email protected] 11 points 3 months ago

Yep, you got it right. The accretion disk is actually really flat. Those images are produced in simulations that take into account the curved (and very complex) paths light takes in the vicinity of a black hole. These images really depend on the angle between the line of sight and the disk.

load more comments (6 replies)
load more comments (20 replies)