this post was submitted on 29 Aug 2024
17 points (90.5% liked)
Technology
59583 readers
3218 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I’m an AI Engineer, been doing this for a long time. I’ve seen plenty of projects that stagnate, wither and get abandoned. I agree with the top 5 in this article, but I might change the priority sequence.
Five leading root causes of the failure of AI projects were identified
4 & 2 —>1. IF they even have enough data to train an effective model, most organizations have no clue how to handle the sheer variety, volume, velocity, and veracity of the big data that AI needs. It’s a specialized engineering discipline to handle that (data engineer). Let alone how to deploy and manage the infra that models need—also a specialized discipline has emerged to handle that aspect (ML engineer). Often they sit at the same desk.
1 & 5 —> 2: stakeholders seem to want AI to be a boil-the-ocean solution. They want it to do everything and be awesome at it. What they often don’t realize is that AI can be a really awesome specialist tool, that really sucks on testing scenarios that it hasn’t been trained on. Transfer learning is a thing but that requires fine tuning and additional training. Huge models like LLMs are starting to bridge this somewhat, but at the expense of the really sharp specialization. So without a really clear understanding of what can be done with AI really well, and perhaps more importantly, what problems are a poor fit for AI solutions, of course they’ll be destined to fail.
3 —> 3: This isn’t a problem with just AI. It’s all shiny new tech. Standard Gardner hype cycle stuff. Remember how they were saying we’d have crypto-refrigerators back in 2016?
Not to derail, but may I ask how did you become an AI Engineer? I'm a software dev by trade, but it feels like a hard field to get into even if I start training for the AI part of it, because I'd need the data to practice =(
But it's such a big buzz word I feel like I need to start looking that direction if i want to stay employed.
I think this is a little paranoid. Somebody has to handle the production models - deploying them to servers, maintaining the servers, developing the APIs and front ends that provide access to the models… I don’t think software dev jobs are going anywhere